This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379404 #10 Mar 31 2025 07:00:43 %S A379404 1,2,4,3,6,19,5,8,24,46,7,12,47,78,31,9,22,65,128,77,14,10,25,72,135, %T A379404 93,50,91,11,27,87,154,134,92,168,239,13,29,94,197,153,183,240,337, %U A379404 232,15,38,97,247,196,241,400,540,254,229,16,44,114,264,246,435 %N A379404 Rectangular array, by descending antidiagonals: the Type 2 runlength index array of A039702 (primes mod 4); see Comments. %C A379404 We begin with a definition of Type 2 runlength array, V(s), of any sequence s for which all the runs referred to have finite length: %C A379404 Suppose s is a sequence (finite or infinite), and define rows of V(s) as follows: %C A379404 (row 0) = s %C A379404 (row 1) = sequence of last terms of runs in (row 0); c(1) = complement of (row 1) in (row 0) %C A379404 For n>=2, %C A379404 (row n) = sequence of last terms of runs in c(n-1); c(n) = complement of (row n) in (row n-1), %C A379404 where the process stops if and when c(n) is empty for some n. %C A379404 *** %C A379404 The corresponding Type 2 runlength index array, The runlength index array, VI(s) is now contructed from V(s) in two steps: %C A379404 (1) Let V*(s) be the array obtaining by repeating the construction of V(s) using (n,s(n)) in place of s(n). %C A379404 (2) Then VI(s) results by retaining only n in V*. %C A379404 Thus, loosely speaking, (row n) of VI(s) shows the indices in s of the numbers in (row n) of V(s). %C A379404 The array VI(s) includes every positive integer exactly once. %C A379404 *** %C A379404 Regarding the present array, each row of U(s) splits a sequence of primes according to remainder modulo 3; e.g., in row 2, the remainders of primes in positions 4,6,8,12,22,25,27,29 are 3,1,3,1,3,1,3,1, respectively. %C A379404 Conjecture: every column is eventually increasing. %e A379404 Corner: %e A379404 1 2 3 5 7 9 10 11 13 15 16 17 %e A379404 4 6 8 12 22 25 27 29 38 44 48 59 %e A379404 19 24 47 65 72 87 94 97 114 121 131 136 %e A379404 46 78 128 135 154 197 247 264 281 287 303 319 %e A379404 31 77 93 134 153 196 246 263 280 338 363 378 %e A379404 14 50 92 183 241 435 546 574 675 691 724 744 %e A379404 91 168 240 400 543 571 758 834 887 1041 1240 1261 %e A379404 239 337 540 568 707 833 886 1002 1381 1397 1407 1501 %e A379404 232 254 674 824 885 987 1380 1500 1811 1883 1976 2280 %e A379404 229 251 669 986 1377 1481 1802 1882 1971 2271 2444 2911 %e A379404 626 983 1376 1480 1944 2240 2439 2910 3179 3295 3710 3939 %e A379404 619 982 1333 1469 1943 2239 2366 2909 3178 3294 3701 3892 %e A379404 Starting with s = A039702, we have for U*(s): %e A379404 (row 1) = ((1,2), (2,3), (3,1), (4,3), (5,3), (7,1), (9,3), (10,1), ...) %e A379404 c(1) = ((4,3), (6,1), (8,3), (12,1), (14,3), (19,3), (22,3), (24,1), (25,1), ...) %e A379404 (row 2) = ((4,3), (6,1), (8,3), (12,1), (22,3), (25,1), (27,3), (29,1) ...) %e A379404 c(2) = ((14,3), (19,3), (24,1), ...) %e A379404 (row 3) = ((19,3), (24,1), ...) %e A379404 so that UI(s) has %e A379404 (row 1) = (1,2,3,5,7,9,10,11,13, ...) %e A379404 (row 2) = (4,6,8,12,22,25, ...) %e A379404 (row 3) = (19,24,47, ...) %t A379404 r[seq_] := seq[[Flatten[Position[Append[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]]; (* Type 2 *) %t A379404 row[0] = Mod[Prime[Range[4000]], 4];(* A039701 *) %t A379404 row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]]; %t A379404 k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[ %t A379404 SortBy[Apply[Complement, Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]]; %t A379404 m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]]; %t A379404 p[n_] := Take[m[[n]], 12] %t A379404 t = Table[p[n], {n, 1, 12}] %t A379404 Grid[t] (* array *) %t A379404 w[n_, k_] := t[[n]][[k]]; %t A379404 Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* sequence *) %t A379404 (* _Peter J. C. Moses_, Dec 04 2024 *) %Y A379404 Cf. A039702, A379046, A379401, A379402, A379403. %K A379404 nonn,tabl %O A379404 1,2 %A A379404 _Clark Kimberling_, Jan 15 2025