cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379415 a(n) = n + floor(n*r/s) + floor(n*t/s), where r = 3^(1/4), s = 3^(1/2), t = 3^(3/4).

This page as a plain text file.
%I A379415 #9 Jan 20 2025 17:12:34
%S A379415 2,5,8,12,14,17,21,24,26,30,33,36,39,42,45,49,51,54,58,61,63,66,70,73,
%T A379415 75,79,82,85,89,91,94,98,101,103,107,110,113,116,119,122,125,128,131,
%U A379415 134,138,140,143,147,150,152,156,159,162,166,168,171,175,178,180
%N A379415 a(n) = n + floor(n*r/s) + floor(n*t/s), where r = 3^(1/4), s = 3^(1/2), t = 3^(3/4).
%C A379415 This sequence and A379414 and A379416 partition the positive integers; see A184812 for a proof.
%F A379415 a(n) = n + floor(n/r) + floor(n*r), where r = 3^(1/4).
%t A379415 r = 3^(1/4); s = 3^(1/2); t = 3^(3/4);
%t A379415 Table[n + Floor[n*s/r] + Floor[n*t/r], {n, 1, 120}]  (* A379414 *)
%t A379415 Table[n + Floor[n*r/s] + Floor[n*t/s], {n, 1, 120}]  (* A379415 *)
%t A379415 Table[n + Floor[n*r/t] + Floor[n*s/t], {n, 1, 120}]  (* A379416 *)
%Y A379415 Cf. A184812, A379415, A379416.
%Y A379415 Cf. also A011002, A002194, A011022.
%K A379415 nonn
%O A379415 1,1
%A A379415 _Clark Kimberling_, Jan 18 2025