This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379430 #13 Jun 15 2025 16:55:09 %S A379430 1,1,1,1,2,1,2,5,5,2,3,14,23,14,3,6,42,108,108,42,6,14,140,501,761, %T A379430 501,140,14,34,473,2264,4744,4744,2264,473,34,95,1670,10087,27768, %U A379430 38495,27768,10087,1670,95,280,5969,44310,153668,279698,279698,153668,44310,5969,280 %N A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1. %C A379430 The planar maps considered are connected and may contain loops and parallel edges. %C A379430 The number of edges is n + k - 2. %H A379430 Timothy R. Walsh, <a href="/A007401/a007401.pdf">Number of sensed planar maps with n edges and m vertices</a>, pp. 1-10. %F A379430 A(n,k) = A(k,n). %e A379430 Array begins: %e A379430 ========================================================= %e A379430 n\k | 1 2 3 4 5 6 7 8 ... %e A379430 ----+---------------------------------------------------- %e A379430 1 | 1 1 1 2 3 6 14 34 ... %e A379430 2 | 1 2 5 14 42 140 473 1670 ... %e A379430 3 | 1 5 23 108 501 2264 10087 44310 ... %e A379430 4 | 2 14 108 761 4744 27768 153668 ... %e A379430 5 | 3 42 501 4744 38495 279698 ... %e A379430 6 | 6 140 2264 27768 279698 ... %e A379430 7 | 14 473 10087 153668 ... %e A379430 8 | 34 1670 44310 ... %e A379430 ... %e A379430 As a triangle, rows give the number of edges (first row is 0 edges): %e A379430 1; %e A379430 1, 1; %e A379430 1, 2, 1; %e A379430 2, 5, 5, 2; %e A379430 3, 14, 23, 14, 3; %e A379430 6, 42, 108, 108, 42, 6; %e A379430 14, 140, 501, 761, 501, 140, 14; %e A379430 34, 473, 2264, 4744, 4744, 2264, 473, 34; %e A379430 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95; %e A379430 ... %Y A379430 Antidiagonal sums are A006384. %Y A379430 Columns 1..2 are A002995, A380237. %Y A379430 Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple). %K A379430 nonn,tabl %O A379430 1,5 %A A379430 _Andrew Howroyd_, Jan 13 2025