cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379431 Array read by antidiagonals: A(n,k) is the number of achiral planar maps with n vertices and k faces, n >= 1, k >= 1.

This page as a plain text file.
%I A379431 #8 Jan 14 2025 17:15:45
%S A379431 1,1,1,1,2,1,2,5,5,2,3,12,17,12,3,6,28,58,58,28,6,10,68,179,247,179,
%T A379431 68,10,20,157,538,942,942,538,157,20,35,372,1531,3388,4345,3388,1531,
%U A379431 372,35,70,845,4288,11424,18316,18316,11424,4288,845,70
%N A379431 Array read by antidiagonals: A(n,k) is the number of achiral planar maps with n vertices and k faces, n >= 1, k >= 1.
%C A379431 The planar maps considered are connected and may contain loops and parallel edges.
%C A379431 The number of edges is n + k - 2.
%F A379431 A(n,k) = A(k,n).
%e A379431 ==================================================
%e A379431 n\k |  1   2    3     4     5     6     7    8 ...
%e A379431 ----+---------------------------------------------
%e A379431   1 |  1   1    1     2     3     6    10   20 ...
%e A379431   2 |  1   2    5    12    28    68   157  372 ...
%e A379431   3 |  1   5   17    58   179   538  1531 4288 ...
%e A379431   4 |  2  12   58   247   942  3388 11424 ...
%e A379431   5 |  3  28  179   942  4345 18316 ...
%e A379431   6 |  6  68  538  3388 18316 ...
%e A379431   7 | 10 157 1531 11424 ...
%e A379431   8 | 20 372 4288 ...
%e A379431   ...
%e A379431 As a triangle, rows give the number of edges (first row is 0 edges):
%e A379431    1;
%e A379431    1,   1;
%e A379431    1,   2,    1;
%e A379431    2,   5,    5,   2;
%e A379431    3,  12,   17,   12,    3;
%e A379431    6,  28,   58,   58,   28,    6;
%e A379431   10,  68,  179,  247,  179,   68,   10;
%e A379431   20, 157,  538,  942,  942,  538,  157,  20;
%e A379431   35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35;
%e A379431   ...
%Y A379431 Antidiagonal sums are A006443.
%Y A379431 Column 1 is A210736(n-1).
%Y A379431 Cf. A269920 (rooted), A277741 (unsensed), A379430 (sensed).
%K A379431 nonn,tabl
%O A379431 1,5
%A A379431 _Andrew Howroyd_, Jan 14 2025