cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379448 a(n) is the number of ones in the binary expansion of n^(n^n).

This page as a plain text file.
%I A379448 #27 Dec 28 2024 05:47:27
%S A379448 1,1,30,1,3683,36635,1156050,1,614037343,11609679812,493508438640
%N A379448 a(n) is the number of ones in the binary expansion of n^(n^n).
%F A379448 a(2^k) = 1. - _Chai Wah Wu_, Dec 24 2024
%F A379448 Probably a(n) = n^n * log(A000265(n))/log(4) + O(n^(n/2)) by analogy with the Law of the Iterated Logarithm. - _Charles R Greathouse IV_, Dec 27 2024
%t A379448 Table[DigitCount[n^n^n,2,1],{n,9}] (* _James C. McMahon_, Dec 26 2024 *)
%o A379448 (PARI) a379448(n) = hammingweight(n^n^n)
%o A379448 (PARI) a(n)=hammingweight((n>>valuation(n,2))^n^n) \\ _Charles R Greathouse IV_, Dec 26 2024
%o A379448 (Python)
%o A379448 def A379448(n): return 1 if n.bit_count()==1 else (n**n**n).bit_count() # _Chai Wah Wu_, Dec 24 2024
%Y A379448 Cf. A000120, A002488, A214561, A379446, A379447.
%K A379448 nonn,base,more
%O A379448 1,3
%A A379448 _Hugo Pfoertner_, Dec 24 2024
%E A379448 a(11) from _Markus Sigg_, Dec 27 2024