cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379458 Array read by downward antidiagonals: A(n,k) = A(n-1,k+1) + 2*(k+1)!*Sum_{j=0..k} A(n-1,j)/j! with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 3, 1, 9, 15, 1, 31, 79, 109, 1, 129, 459, 835, 1053, 1, 651, 3003, 6885, 10661, 12767, 1, 3913, 22183, 61735, 114373, 161229, 186763, 1, 27399, 183975, 603565, 1307997, 2134803, 2830787, 3204313, 1, 219201, 1698819, 6424059, 15981869, 29753069, 44649839, 56720039, 63128665
Offset: 0

Views

Author

Mikhail Kurkov, Dec 23 2024

Keywords

Examples

			Array begins:
===========================================================
n\k|     0      1       2        3         4          5 ...
---+-------------------------------------------------------
0  |     1      1       1        1         1          1 ...
1  |     3      9      31      129       651       3913 ...
2  |    15     79     459     3003     22183     183975 ...
3  |   109    835    6885    61735    603565    6424059 ...
4  |  1053  10661  114373  1307997  15981869  208612693 ...
5  | 12767 161229 2134803 29753069 437287383 6780218397 ...
  ...
		

Crossrefs

Cf. A217061.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-1, k, v[k+1] + 2*k!*sum(j=1, k, v[j]/(j-1)!)); r[1+i] = v[1..n+1]); Mat(r)}
    { A(5) }

Formula

Conjecture: A(n,0) = A217061(n+1).