A379458 Array read by downward antidiagonals: A(n,k) = A(n-1,k+1) + 2*(k+1)!*Sum_{j=0..k} A(n-1,j)/j! with A(0,k) = 1, n >= 0, k >= 0.
1, 1, 3, 1, 9, 15, 1, 31, 79, 109, 1, 129, 459, 835, 1053, 1, 651, 3003, 6885, 10661, 12767, 1, 3913, 22183, 61735, 114373, 161229, 186763, 1, 27399, 183975, 603565, 1307997, 2134803, 2830787, 3204313, 1, 219201, 1698819, 6424059, 15981869, 29753069, 44649839, 56720039, 63128665
Offset: 0
Examples
Array begins: =========================================================== n\k| 0 1 2 3 4 5 ... ---+------------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 3 9 31 129 651 3913 ... 2 | 15 79 459 3003 22183 183975 ... 3 | 109 835 6885 61735 603565 6424059 ... 4 | 1053 10661 114373 1307997 15981869 208612693 ... 5 | 12767 161229 2134803 29753069 437287383 6780218397 ... ...
Crossrefs
Cf. A217061.
Programs
-
PARI
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1]; for(i=1, m, v=vector(#v-1, k, v[k+1] + 2*k!*sum(j=1, k, v[j]/(j-1)!)); r[1+i] = v[1..n+1]); Mat(r)} { A(5) }
Formula
Conjecture: A(n,0) = A217061(n+1).