cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379459 Array read by downward antidiagonals: A(n,k) = A(n-1,k+1) + 2*(k+1)!*Sum_{j=0..k} A(n-1,j)/j! with A(0,k) = 2*(k+1)!, n >= 0, k >= 0.

Original entry on oeis.org

2, 4, 8, 12, 36, 52, 48, 192, 368, 472, 240, 1200, 2880, 4560, 5504, 1440, 8640, 24960, 47280, 67408, 78416, 10080, 70560, 238560, 527520, 871584, 1163232, 1320064, 80640, 645120, 2499840, 6330240, 11926656, 18031104, 22997696, 25637824, 725760, 6531840, 28546560, 81527040, 172811520, 292642560, 415728960, 513000000, 564275648
Offset: 0

Views

Author

Mikhail Kurkov, Dec 23 2024

Keywords

Examples

			Array begins:
================================================================
n\k|     0       1        2         3          4           5 ...
---+------------------------------------------------------------
0  |     2       4       12        48        240        1440 ...
1  |     8      36      192      1200       8640       70560 ...
2  |    52     368     2880     24960     238560     2499840 ...
3  |   472    4560    47280    527520    6330240    81527040 ...
4  |  5504   67408   871584  11926656  172811520  2649749760 ...
5  | 78416 1163232 18031104 292642560 4977020160 88700451840 ...
  ...
		

Crossrefs

Cf. A006351.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 2*k!)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-1, k, v[k+1] + 2*k!*sum(j=1, k, v[j]/(j-1)!)); r[1+i] = v[1..n+1]); Mat(r)}
    { A(5) }

Formula

Conjecture: A(n,0) = A006351(n+2).