A379459 Array read by downward antidiagonals: A(n,k) = A(n-1,k+1) + 2*(k+1)!*Sum_{j=0..k} A(n-1,j)/j! with A(0,k) = 2*(k+1)!, n >= 0, k >= 0.
2, 4, 8, 12, 36, 52, 48, 192, 368, 472, 240, 1200, 2880, 4560, 5504, 1440, 8640, 24960, 47280, 67408, 78416, 10080, 70560, 238560, 527520, 871584, 1163232, 1320064, 80640, 645120, 2499840, 6330240, 11926656, 18031104, 22997696, 25637824, 725760, 6531840, 28546560, 81527040, 172811520, 292642560, 415728960, 513000000, 564275648
Offset: 0
Examples
Array begins: ================================================================ n\k| 0 1 2 3 4 5 ... ---+------------------------------------------------------------ 0 | 2 4 12 48 240 1440 ... 1 | 8 36 192 1200 8640 70560 ... 2 | 52 368 2880 24960 238560 2499840 ... 3 | 472 4560 47280 527520 6330240 81527040 ... 4 | 5504 67408 871584 11926656 172811520 2649749760 ... 5 | 78416 1163232 18031104 292642560 4977020160 88700451840 ... ...
Crossrefs
Cf. A006351.
Programs
-
PARI
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 2*k!)); r[1] = v[1..n+1]; for(i=1, m, v=vector(#v-1, k, v[k+1] + 2*k!*sum(j=1, k, v[j]/(j-1)!)); r[1+i] = v[1..n+1]); Mat(r)} { A(5) }
Formula
Conjecture: A(n,0) = A006351(n+2).