cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379460 Array read by downward antidiagonals: A(n,k) = A(n,k-1) + (k+1)*(A(n-1,k) + A(n-1,k+1)) with A(n,0) = A(n-1,0) + A(n-1,1), A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 6, 8, 1, 12, 44, 52, 1, 20, 140, 420, 472, 1, 30, 340, 1860, 5032, 5504, 1, 42, 700, 6020, 28672, 72912, 78416, 1, 56, 1288, 15960, 116592, 508704, 1241648, 1320064, 1, 72, 2184, 36792, 380352, 2496480, 10257200, 24317760, 25637824, 1, 90, 3480, 76440, 1059744, 9696960, 59030960, 232182240, 538637824, 564275648
Offset: 0

Views

Author

Mikhail Kurkov, Dec 23 2024

Keywords

Examples

			Array begins:
=============================================================
n\k|     0       1        2        3         4          5 ...
---+---------------------------------------------------------
0  |     1       1        1        1         1          1 ...
1  |     2       6       12       20        30         42 ...
2  |     8      44      140      340       700       1288 ...
3  |    52     420     1860     6020     15960      36792 ...
4  |   472    5032    28672   116592    380352    1059744 ...
5  |  5504   72912   508704  2496480   9696960   31778208 ...
  ...
		

Crossrefs

Cf. A006351.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v[1] = v[1] + v[2]; for(k=2, #v-1, v[k] = v[k-1] + k*(v[k] + v[k+1])); r[1+i] = v[1..n+1]); Mat(r)}
    { A(5) }

Formula

Conjecture: A(n,0) = A006351(n+1).