This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379461 #39 Apr 26 2025 00:34:35 %S A379461 0,0,0,0,0,3,0,0,0,0,0,3,4,6,0,0,5,0,0,3,9,0,5,0,0,0,3,4,6,8,12,0,0,0, %T A379461 7,0,3,5,6,10,15,0,0,0,0,7,3,4,6,9,12,18,0,0,0,5,8,10,0,3,7,21,0,0,5, %U A379461 9,15,0,0,3,4,6,8,12,16,24,0,0,0,0,0,3,9,27,0 %N A379461 Irregular triangle read by rows in which row n lists the divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such divisors do not exist. %C A379461 The number of positive terms in row n is A174903(n). %C A379461 The indices of the rows that contain a zero give A174905. %C A379461 The indices of the rows that contain positive integers give A005279. %C A379461 The positive integers in the n-th row are the missing divisors of n in the n-th row of A379374. %C A379461 The odd integers in the n-th row are the missing odd divisors of n in the n-th row of A379288. %e A379461 Triangle begins: %e A379461 0; %e A379461 0; %e A379461 0; %e A379461 0; %e A379461 0; %e A379461 3; %e A379461 0; %e A379461 0; %e A379461 0; %e A379461 0; %e A379461 0; %e A379461 3, 4, 6; %e A379461 0; %e A379461 0; %e A379461 5; %e A379461 0; %e A379461 0; %e A379461 3, 9; %e A379461 0; %e A379461 5; %e A379461 ... %e A379461 From _Omar E. Pol_, Apr 19 2025: (Start) %e A379461 For n = 12 there are three divisors m of 12 such that there is a divisor d of 12 with d < m < 2*d. Those divisors are 3, 4 and 6 as shown below: %e A379461 d < m < 2*d %e A379461 -------------------- %e A379461 1 2 %e A379461 2 3 4 %e A379461 3 4 6 %e A379461 4 6 8 %e A379461 6 12 %e A379461 12 24 %e A379461 . %e A379461 So the 12th row of the triangle is [3, 4, 6]. (End) %t A379461 row[n_] := Module[{d = Partition[Divisors[n], 2, 1], e}, e = Select[d, #[[2]] < 2*#[[1]] &][[;; , 2]]; If[e == {}, {0}, e]]; Table[row[n], {n, 1, 55}] // Flatten (* _Amiram Eldar_, Dec 23 2024 *) %Y A379461 Cf. A005279, A027750, A174903, A174905, A182469, A237271, A379288, A379374, A379379, A379384, A383209. %K A379461 nonn,tabf %O A379461 1,6 %A A379461 _Omar E. Pol_, Dec 23 2024 %E A379461 More terms from _Amiram Eldar_, Dec 23 2024 %E A379461 Name changed by _Omar E. Pol_, Feb 05 2025