cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379462 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -3.

This page as a plain text file.
%I A379462 #14 Jan 28 2025 03:48:25
%S A379462 1,1,1,4,13,31,75,204,561,1499,4001,10814,29364,79704,216672,590764,
%T A379462 1614421,4419049,12116139,33277722,91546143,252209535,695803659,
%U A379462 1922166420,5316714156,14723570406,40820144106,113293243636,314759548879,875342190283,2436582442381
%N A379462 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -3.
%F A379462 a(n) = Sum_{k=0..floor(n/3)} 2*binomial(n, k*3)*(binomial(3*k+3, k)/(k+2) - binomial(3*k, k-1)/(k+1)). - _Thomas Scheuerle_, Jan 07 2025
%F A379462 a(n) ~ 23 * (1 + 3/2^(2/3))^(n + 3/2) / (4 * sqrt(3*Pi) * n^(3/2)). - _Vaclav Kotesovec_, Jan 15 2025
%e A379462 For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0). An example of a path with these steps, but not staying on or above y = -3, is for n=6: DDUUUU.
%o A379462 (PARI) lista(nn) = my(v=vector(nn+5), w); print1(v[4]=1); for(n=1, nn, w=v; for(i=1, n+3, w[i]+=v[i+2]; w[i+1]+=v[i]); v=w; print1(", ", v[4])); \\ _Jinyuan Wang_, Jan 07 2025
%Y A379462 Cf. A071879, A116411, A378849, A378850.
%K A379462 nonn
%O A379462 0,4
%A A379462 _Emely Hanna Li Lobnig_, Dec 23 2024
%E A379462 More terms from _Jinyuan Wang_, Jan 07 2025