cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379463 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -1.

This page as a plain text file.
%I A379463 #16 Jan 29 2025 08:53:06
%S A379463 1,1,1,1,3,11,31,71,150,334,826,2146,5498,13690,33762,84306,214451,
%T A379463 551107,1417291,3637627,9343555,24096675,62439587,162331747,422773098,
%U A379463 1102422546,2879207046,7534606366,19756893196,51894005428,136496647696,359478351816,947912008073
%N A379463 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -1.
%F A379463 a(n) ~ 2^(3/2) * (1 + 4/3^(3/4))^(n + 3/2) / (3^(11/8) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Jan 15 2025
%F A379463 Conjecture D-finite with recurrence 3*n*(3*n+4)*(n-3)*(3*n+8)*a(n) +3*(-45*n^4+54*n^3+192*n^2-27*n-20)*a(n-1)
%F A379463 +9*(n-1)*(30*n^3-72*n^2-7*n+20)*a(n-2) -3*(n-1)*(n-2)*(90*n^2-234*n+95)*a(n-3) -(n-1)*(n-2)*(n-3)*(121*n+499)*a(n-4) +229*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jan 29 2025
%e A379463 For n = 4, the a(4)=3 paths are HHHH, UUDU, UUUD, where U=(1,1), D=(1,-3) and H=(1,0).
%p A379463 A379463 := proc(n)
%p A379463     add(2*binomial(n, k*4)*binomial(4*k+1, k)/(3*k+2),k=0..floor(n/4)) ;
%p A379463 end proc:
%p A379463 seq(A379463(n),n=0..50) ; # _R. J. Mathar_, Jan 29 2025
%o A379463 (PARI) a(n) = sum(k=0, floor(n/4), 2*binomial(n, k*4)*binomial(4*k+1, k)/(3*k+2)) \\ _Thomas Scheuerle_, Jan 07 2025
%Y A379463 Cf. A069271, A127902, A379464.
%K A379463 nonn
%O A379463 0,5
%A A379463 _Emely Hanna Li Lobnig_, Dec 23 2024
%E A379463 More terms from _Jinyuan Wang_, Jan 07 2025