cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379464 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -2.

This page as a plain text file.
%I A379464 #20 Jan 29 2025 08:58:29
%S A379464 1,1,1,1,4,16,46,106,226,514,1306,3466,9002,22634,56330,142026,364743,
%T A379464 945303,2448511,6323695,16336885,42363693,110340297,288229377,
%U A379464 753920796,1973799396,5174280216,13588243696,35748326836,94188788164,248464963876,656148369796
%N A379464 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -3), and staying on or above y = -2.
%H A379464 Robert Israel, <a href="/A379464/b379464.txt">Table of n, a(n) for n = 0..2271</a>
%F A379464 a(n) ~ 2^(5/2) * (1 + 4/3^(3/4))^(n + 3/2) / (3^(11/8) * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Jan 15 2025
%F A379464 Conjecture D-finite with recurrence +3*(n+4)*(3*n+4)*(3*n+8)*a(n) +3*(-63*n^3-297*n^2-349*n-60)*a(n-1) +3*(189*n^3+270*n^2-229*n-140)*a(n-2) +15*(-63*n^3+117*n^2+44*n-64)*a(n-3) +(689*n^3-5372*n^2+6946*n-1288)*a(n-4) +(n-4)*(201*n^2+2767*n-3011)*a(n-5) -(n-5)*(579*n+257)*(n-4)*a(n-6) +229*(n-5)*(n-6)*(n-4)*a(n-7)=0. - _R. J. Mathar_, Jan 29 2025
%e A379464 For n = 4, the a(4)=4 paths are HHHH, UDUU, UUDU, UUUD, where U=(1,1), D=(1,-3) and H=(1,0).
%p A379464 f:= proc(n,y) option remember;
%p A379464     if n = 0 then if y = 0 then return 1 else return 0 fi fi;
%p A379464     if y > n then return 0 fi;
%p A379464     if y >= -1 then procname(n-1,y-1) + procname(n-1,y) + procname(n-1,y+3)
%p A379464     else procname(n-1,y) + procname(n-1,y+3)
%p A379464     fi;
%p A379464 end proc:
%p A379464 map(f, [$0..40],0); # _Robert Israel_, Jan 23 2025
%o A379464 (PARI) a(n) = sum(k=0, floor(n/4), 3*binomial(n, k*4)*binomial(4*k+3, k)/(4*k+3)) \\ _Thomas Scheuerle_, Jan 07 2025
%Y A379464 Cf. A127902, A379463.
%K A379464 nonn
%O A379464 0,5
%A A379464 _Emely Hanna Li Lobnig_, Dec 23 2024
%E A379464 More terms from _Jinyuan Wang_, Jan 07 2025