This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379469 #18 Aug 03 2025 21:06:02 %S A379469 8,1,3,0,5,2,5,2,9,5,8,5,1,4,1,6,0,5,9,7,6,0,9,6,9,0,1,2,0,3,5,7,3,8, %T A379469 0,2,0,7,5,8,8,0,3,9,7,1,6,6,2,8,4,8,8,8,2,1,4,7,1,5,6,1,6,1,4,9,0,9, %U A379469 9,7,5,2,0,4,6,6,1,7,8,5,2,1,6,8,7,7,9,9,8,4,6,4,0,3,5,6,4,5,4,0 %N A379469 Decimal expansion of (1 + sqrt(6))/(3*sqrt(2)). %C A379469 This constant gives an upper bound to the Steiner ratio of a regular tetrahedron. %D A379469 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.6, p. 505. %H A379469 Ding-Zhu Du and Warren D. Smith, <a href="https://doi.org/10.1006/jcta.1996.0040">Disproofs of Generalized Gilbert-Pollak Conjecture on the Steiner Ratio in Three or More Dimensions</a>, Journal of Combinatorial Theory, Series A, Volume 74, Issue 1, 1996, Pages 115-130. See p. 128. %H A379469 Warren D. Smith, <a href="https://doi.org/10.1007/BF01758756">How to find Steiner minimal trees in euclidean d-space</a>, Algorithmica 7, 137-177 (1992). %F A379469 Equals A086180/A010474. %F A379469 Minimal polynomial: 324*x^4 - 252*x^2 + 25. - _Stefano Spezia_, Aug 03 2025 %e A379469 0.81305252958514160597609690120357380207588039716628... %t A379469 RealDigits[(1+Sqrt[6])/(3Sqrt[2]),10,100][[1]] %Y A379469 Cf. A002193, A010464, A010474, A086180. %K A379469 nonn,cons,easy %O A379469 0,1 %A A379469 _Stefano Spezia_, Dec 23 2024