cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379483 a(n) is the number of trailing 1-bits in the binary representation of sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

This page as a plain text file.
%I A379483 #10 Dec 27 2024 18:25:32
%S A379483 1,1,5,1,1,2,1,1,1,1,3,3,2,1,3,1,1,1,1,1,2,2,3,2,1,3,2,1,1,2,7,1,1,1,
%T A379483 1,1,2,1,1,1,1,5,1,7,1,2,4,4,1,1,2,2,1,4,6,1,3,1,3,4,1,2,1,1,2,1,1,1,
%U A379483 1,1,2,1,1,7,4,1,2,1,1,1,1,1,2,2,1,1,6,2,2,1,7,4,1,2,1,2,6,1,2,1,1,3,1,6,2
%N A379483 a(n) is the number of trailing 1-bits in the binary representation of sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
%H A379483 Antti Karttunen, <a href="/A379483/b379483.txt">Table of n, a(n) for n = 1..20000</a>
%H A379483 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.
%H A379483 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%H A379483 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F A379483 a(n) = A007814(1+A379482(n)).
%F A379483 a(n) = A379222(A048673(n)).
%t A379483 {1}~Join~Array[Length@ Last@ Split[IntegerDigits[#, 2]][[1 ;; -1 ;; 2]] &[
%t A379483 DivisorSigma[1,
%t A379483   Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2] ] &,
%t A379483     105, 2] (* _Michael De Vlieger_, Dec 27 2024 *)
%o A379483 (PARI) A379483(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); valuation(1+sigma(factorback(f)),2); };
%Y A379483 Cf. A003961, A003973, A007814, A048673, A379222, A379482, A379483.
%Y A379483 Cf. also A336700.
%K A379483 nonn
%O A379483 1,3
%A A379483 _Antti Karttunen_, Dec 27 2024