This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379487 #8 Jan 02 2025 13:03:30 %S A379487 1,3,2,1,6,3,2,15,1,9,6,3,2,3,30,1,18,3,10,3,2,9,6,15,1,3,10,1,30,15, %T A379487 2,21,6,9,42,63,2,15,14,45,42,3,2,21,30,9,6,3,1,3,6,7,18,15,2,15,10, %U A379487 45,30,105,2,3,2,1,42,3,2,21,6,63,18,45,2,3,10,35,66,21,10,3,1,63,42,21,2,3,30,45,90,15,14,21 %N A379487 a(n) = gcd(n,A003961(n)) * gcd(sigma(n),A276086(n)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function. %H A379487 Antti Karttunen, <a href="/A379487/b379487.txt">Table of n, a(n) for n = 1..20000</a> %H A379487 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %H A379487 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>. %H A379487 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>. %F A379487 a(n) = A322361(n) * A324644(n). %o A379487 (PARI) %o A379487 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A379487 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A379487 A379487(n) = { my(s=sigma(n),x=A003961(n),y=A276086(n)); (gcd(n,x)*gcd(s,y)); }; %Y A379487 Cf. A000203, A003961, A276086, A322361, A324644, A379486, A379488, A379489. %K A379487 nonn %O A379487 1,2 %A A379487 _Antti Karttunen_, Jan 02 2025