cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379497 Dirichlet inverse of A046897, where A046897 is the sum of divisors of n that are not divisible by 4.

This page as a plain text file.
%I A379497 #10 Jan 03 2025 09:37:07
%S A379497 1,-3,-4,6,-6,12,-8,-12,3,18,-12,-24,-14,24,24,24,-18,-9,-20,-36,32,
%T A379497 36,-24,48,5,42,0,-48,-30,-72,-32,-48,48,54,48,18,-38,60,56,72,-42,
%U A379497 -96,-44,-72,-18,72,-48,-96,7,-15,72,-84,-54,0,72,96,80,90,-60,144,-62,96,-24,96,84,-144,-68,-108,96,-144,-72,-36
%N A379497 Dirichlet inverse of A046897, where A046897 is the sum of divisors of n that are not divisible by 4.
%H A379497 Antti Karttunen, <a href="/A379497/b379497.txt">Table of n, a(n) for n = 1..20000</a>
%F A379497 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A046897(n/d) * a(d).
%F A379497 From _Amiram Eldar_, Jan 02 2025: (Start)
%F A379497 Multiplicative with a(2^e) = -3*(-2)^(e-1), and for an odd prime p, a(p) = -(p+1), a(p^2) = p, and a(p^e) = 0 for e >= 3.
%F A379497 Dirichlet g.f.: 1/((1 - 1/4^(s-1)) * zeta(s-1) * zeta(s)). (End)
%t A379497 f[p_, e_] := If[e == 1, -p-1, If[e == 2, p, 0]]; f[2, e_] := -3*(-2)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Jan 02 2025 *)
%o A379497 (PARI)
%o A379497 A046897(n) = if(n<1, 0, sumdiv(n, d, if(d%4, d, 0)));
%o A379497 memoA379497 = Map();
%o A379497 A379497(n) = if(1==n,1,my(v); if(mapisdefined(memoA379497,n,&v), v, v = -sumdiv(n,d,if(d<n,A046897(n/d)*A379497(d),0)); mapput(memoA379497,n,v); (v)));
%o A379497 (PARI) g(p, e) = if(p == 2, -3*(-2)^(e-1), if(e == 1, -p-1, e == 2, p, e > 2, 0));
%o A379497 a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; g(p, e));} \\ _Amiram Eldar_, Jan 02 2025
%Y A379497 Cf. A046897.
%K A379497 sign,mult,easy
%O A379497 1,2
%A A379497 _Antti Karttunen_, Jan 02 2025