This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379499 #8 Jan 03 2025 09:32:22 %S A379499 6,28,12,72,117,30,120,360,775,56,180,1080,1680,2793,132,336,672, %T A379499 19500,7392,16093,182,336,3510,3960,137200,24024,30927,306,496,1584, %U A379499 43400,10192,1948584,55692,88723,380,702,9801,5460,368676,40392,5228860,116280,137541,552,840,9300,488125,17136,2928926,69160,25645860,209760,292537,870 %N A379499 Square array A(n, k) = A064987(A246278(n, k)), read by falling antidiagonals; A064987(n) = n*sigma(n), applied to the prime shift array. %C A379499 Each column is strictly monotonic. %H A379499 Antti Karttunen, <a href="/A379499/b379499.txt">Table of n, a(n) for n = 1..11325; the first 150 antidiagonals of array</a> %H A379499 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A379499 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A379499 A(n, k) = A246278(n, k) * A355927(n, k). %e A379499 The top left corner of the array: %e A379499 k=| 1 2 3 4 5 6 7 8 9 10 %e A379499 2k| 2 4 6 8 10 12 14 16 18 20 %e A379499 --+--------------------------------------------------------------------------------- %e A379499 1 | 6, 28, 72, 120, 180, 336, 336, 496, 702, 840, %e A379499 2 | 12, 117, 360, 1080, 672, 3510, 1584, 9801, 9300, 6552, %e A379499 3 | 30, 775, 1680, 19500, 3960, 43400, 5460, 488125, 83790, 102300, %e A379499 4 | 56, 2793, 7392, 137200, 10192, 368676, 17136, 6725201, 901208, 508326, %e A379499 5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458, %o A379499 (PARI) %o A379499 up_to = 55; %o A379499 A064987(n) = (n*sigma(n)); %o A379499 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A379499 A379499sq(row,col) = A064987(A246278sq(row,col)); %o A379499 A379499list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379499sq(col,(a-(col-1))))); (v); }; %o A379499 v379499 = A379499list(up_to); %o A379499 A379499(n) = v379499[n]; %Y A379499 Elementwise product of arrays A246278 and A355927. %Y A379499 Cf. A000203, A003961, A064987, A379500. %K A379499 nonn,tabl %O A379499 1,1 %A A379499 _Antti Karttunen_, Jan 02 2025