This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379500 #11 Jan 03 2025 09:32:28 %S A379500 6,28,12,2,117,30,120,40,775,56,45,1080,1680,2793,132,21,672,19500, %T A379500 7392,16093,182,84,390,3960,137200,24024,30927,306,496,176,43400,208, %U A379500 1948584,55692,88723,380,78,9801,5460,368676,40392,5228860,116280,137541,552,210,9300,488125,17136,2928926,69160,25645860,209760,292537,870 %N A379500 Square array A(n, k) = A249670(A246278(n, k)), read by falling antidiagonals; A249670(n) = A017665(n)*A017666(n), applied to the prime shift array. %H A379500 Antti Karttunen, <a href="/A379500/b379500.txt">Table of n, a(n) for n = 1..11325; the first 150 antidiagonals of array</a> %H A379500 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A379500 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A379500 A(n, k) = A341605(n, k) * A341606(n, k). %F A379500 A(n, k) = A379499(n, k) / (A355925(n, k)^2). %e A379500 The top left corner of the array: %e A379500 k=| 1 2 3 4 5 6 7 8 9 10 %e A379500 2k| 2 4 6 8 10 12 14 16 18 20 %e A379500 --+--------------------------------------------------------------------------------- %e A379500 1 | 6, 28, 2, 120, 45, 21, 84, 496, 78, 210, %e A379500 2 | 12, 117, 40, 1080, 672, 390, 176, 9801, 9300, 6552, %e A379500 3 | 30, 775, 1680, 19500, 3960, 43400, 5460, 488125, 83790, 102300, %e A379500 4 | 56, 2793, 7392, 137200, 208, 368676, 17136, 6725201, 18392, 10374, %e A379500 5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458, %o A379500 (PARI) %o A379500 up_to = 55; %o A379500 A249670(n) = { my(ab = sigma(n)/n); numerator(ab)*denominator(ab); }; %o A379500 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A379500 A379500sq(row,col) = A249670(A246278sq(row,col)); %o A379500 A379500list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379500sq(col,(a-(col-1))))); (v); }; %o A379500 v379500 = A379500list(up_to); %o A379500 A379500(n) = v379500[n]; %Y A379500 Elementwise product of arrays A341605 and A341606. %Y A379500 Cf. A246278, A249670, A355925, A379499. %Y A379500 Cf. A036690 (leftmost column), A361468 (even bisection gives row 2). %K A379500 nonn,tabl %O A379500 1,1 %A A379500 _Antti Karttunen_, Jan 02 2025