This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379501 #16 Jan 05 2025 22:38:56 %S A379501 2,16,216,422,470,51016,5082,4446,864,106688,1301846,880,204182, %T A379501 1985872,236964,646310,1030,176778,2799756,96178962,563400,62092576, %U A379501 1566805968,27274,559406,-16252236,1040774592,263042394,7794826,115781204,13256922,-16386856,-1230440,376172,-67188814,222905278,13547232,28352541646 %N A379501 a(n) = (3/2)*A019565((2n-1)^2) - A019565(A001065((2n-1)^2)), where A019565 is the base-2 exp-function, and A001065 is the sum of proper divisors of n. %H A379501 Antti Karttunen, <a href="/A379501/b379501.txt">Table of n, a(n) for n = 1..16384</a> %H A379501 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>. %H A379501 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>. %F A379501 a(n) = A379496(A016754(n)) = A019565(1+A016754(n)) - A379495(A016754(n)). %F A379501 a(n) = (3/2)*A019565(A016754(n)) - A379495(A016754(n)). %o A379501 (PARI) %o A379501 A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); }; %o A379501 A379501(n) = { my(osq=((2*n)-1)^2); ((3/2)*A019565(osq) - A019565(sigma(osq)-osq)); }; %Y A379501 Cf. A001065, A016754, A019565, A379495, A379496. %Y A379501 Cf. also A378231, A337339. %K A379501 sign %O A379501 1,1 %A A379501 _Antti Karttunen_, Jan 05 2025