cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379508 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A379508 #15 Jul 13 2025 17:36:49
%S A379508 1,97,3361,114241,3880897,131836321,4478554081,152139002497,
%T A379508 5168247530881,175568277047521,5964153172084897,202605639573839041,
%U A379508 6882627592338442561,233806732499933208097,7942546277405390632801,269812766699283348307201,9165691521498228451812097,311363698964240484013304161
%N A379508 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%H A379508 Miguel-Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, <a href="/A379508/a379508.pdf">El Libro de las Ternas Pitagóricas</a>, preprint, 2024.
%F A379508 a(n) = A377726(n,1) + A377726(n,2).
%e A379508 For n=2, the short leg is A377726(2,1) = 13 and the long leg is A377725(2,2) = 84 so the semiperimeter is then a(2) = 13 + 84 = 97.
%t A379508 s[n_]:=s[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra^2-1}];sumas={};Do[sumas=Join[semis,FullSimplify[s[n]]],{n,0,17}];sumas
%Y A379508 Cf. A002315, A377016, A377017, A377726, A378965, A378965.
%K A379508 nonn,easy
%O A379508 0,2
%A A379508 _Miguel-Ángel Pérez García-Ortega_, Dec 23 2024