cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379509 Sum of the legs of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A379509 #8 Jan 17 2025 17:05:58
%S A379509 7,127,3527,115199,3886471,131868799,4478743367,152140105727,
%T A379509 5168253960967,175568314524799,5964153390518471,202605640846963199,
%U A379509 6882627599758753927,233806732543181952127,7942546277657462785607,269812766700752532479999,9165691521506791484696071,311363698964290393026435199
%N A379509 Sum of the legs of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%C A379509 For all n:  a(n) == 7 (mod 8).
%D A379509 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
%H A379509 Miguel-Ángel Pérez García-Ortega, <a href="/A379509/a379509.pdf">El Libro de las Ternas Pitagóricas</a>
%F A379509 a(n) = A377725(n,1) + A377725(n,2).
%e A379509 For n=2, the short leg is A377725(2,1) = 15 the long leg is A377725(2,2) = 112 so the semiperimeter is then a(2) = 15 + 112 = 127.
%t A379509 s[n_]:=s[n]=Module[{r},r=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2r^2+4r+1}];sumas={};Do[semis=Join[sumas,FullSimplify[s[n]]],{n,0,17}];sumas
%Y A379509 Cf. A002315, A377025, A378386, A378380.
%K A379509 nonn,easy
%O A379509 0,1
%A A379509 _Miguel-Ángel Pérez García-Ortega_, Dec 23 2024