cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379513 Numerators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

This page as a plain text file.
%I A379513 #9 Dec 24 2024 07:29:28
%S A379513 1,4,19,107,39,61,259,817,853,97,301,307,2209,187,2279,39583,121129,
%T A379513 122557,124699,126127,509863,171541,173921,526523,6930479,6983519,
%U A379513 7063079,7118771,7193027,802663,405199,13495327,1131701,30726097,123670153,622026437,11910394103
%N A379513 Numerators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).
%H A379513 Amiram Eldar, <a href="/A379513/b379513.txt">Table of n, a(n) for n = 1..1000</a>
%H A379513 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. See p. 51.
%H A379513 V. Sita Ramaiah and D. Suryanarayana, <a href="https://web.archive.org/web/20200803214209/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005bab_1334.pdf">Sums of reciprocals of some multiplicative functions - II</a>, Indian J. Pure Appl. Math., Vol. 11 (1980), pp. 1334-1355.
%H A379513 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.9, pp. 28-29.
%H A379513 Rimer Zurita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Zurita/zur3.html">Generalized Alternating Sums of Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 23 (2020), Article 20.10.4. See section 4.3, pp. 12-15.
%F A379513 a(n) = numerator(Sum_{k=1..n} 1/A034448(k)).
%F A379513 a(n)/A379514(n) = B * log(n) + D + O(log(n)^(5/3) * log(log(n))^(4/3) / n), where B = A308041, D = B * (gamma + A1 - A2), gamma = A001620, A1 = Sum_{p prime} ((p*C(p)*log(p)/(p-1)) * Sum_{k>=1} (k/(p^k*(p^(k+1)+1)))), A2 = Sum_{p prime} ((C(p)*log(p)/p^2) * Sum_{k>=0} (1/(p^k*(p^(k+1)+1)))), and C(p) = 1 - (p/(p-1)) * Sum_{k>=1} (1/(p^k*(p^(k+1)+1))) (Sita Ramaiah and Suryanarayana, 1980).
%e A379513 Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 817/360, 853/360, 97/40, 301/120, 307/120, ...
%t A379513 usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
%o A379513 (PARI) usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
%o A379513 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(numerator(s), ", "))};
%Y A379513 Cf. A034448, A064609, A370898, A379514 (denominators), A379515.
%Y A379513 Cf. A001620, A308041.
%K A379513 nonn,easy,frac
%O A379513 1,2
%A A379513 _Amiram Eldar_, Dec 23 2024