cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379514 Denominators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

This page as a plain text file.
%I A379514 #7 Dec 24 2024 07:28:42
%S A379514 1,3,12,60,20,30,120,360,360,40,120,120,840,70,840,14280,42840,42840,
%T A379514 42840,42840,171360,57120,57120,171360,2227680,2227680,2227680,
%U A379514 2227680,2227680,247520,123760,4084080,340340,9189180,36756720,183783600,3491888400,3491888400
%N A379514 Denominators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).
%H A379514 Amiram Eldar, <a href="/A379514/b379514.txt">Table of n, a(n) for n = 1..1000</a>
%H A379514 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. See p. 51.
%H A379514 V. Sita Ramaiah and D. Suryanarayana, <a href="https://web.archive.org/web/20200803214209/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005bab_1334.pdf">Sums of reciprocals of some multiplicative functions - II</a>, Indian J. Pure Appl. Math., Vol. 11 (1980), pp. 1334-1355.
%H A379514 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.9, pp. 28-29.
%H A379514 Rimer Zurita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Zurita/zur3.html">Generalized Alternating Sums of Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 23 (2020), Article 20.10.4. See section 4.3, pp. 12-15.
%F A379514 a(n) = denominator(Sum_{k=1..n} 1/A034448(k)).
%t A379514 usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
%o A379514 (PARI) usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
%o A379514 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(denominator(s), ", "))};
%Y A379514 Cf. A034448, A064609, A370898, A379513 (numerators), A379516.
%K A379514 nonn,easy,frac
%O A379514 1,2
%A A379514 _Amiram Eldar_, Dec 23 2024