cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379515 Numerators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

This page as a plain text file.
%I A379515 #8 Dec 24 2024 07:28:24
%S A379515 1,2,11,43,53,4,37,293,329,103,113,107,809,129,809,12913,41119,39691,
%T A379515 41833,8081,33395,32443,33871,10973,148361,48275,7149,34861,108119,
%U A379515 319937,164941,1761311,112361,662011,5405483,26502319,516671461,508357441,3620857237,3556192637
%N A379515 Numerators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).
%H A379515 Amiram Eldar, <a href="/A379515/b379515.txt">Table of n, a(n) for n = 1..1000</a>
%H A379515 Olivier Bordellès and Benoit Cloitre, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Bordelles/bord14.html">An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.3. See p. 4, eq. (vi).
%H A379515 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.9, pp. 28-29.
%F A379515 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).
%F A379515 a(n)/A379516(n) = E * log(n) + F + O(log(n)^(5/3) * log(log(n))^(4/3) / n^u), where u > 0, E = A308041 * (2/(A323482 + 1/2) - 1) = 0.10259754363391420806..., and F is a constant.
%e A379515 Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 293/360, 329/360, 103/120, 113/120, 107/120, ...
%t A379515 usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
%o A379515 (PARI) usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
%o A379515 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(numerator(s), ", "))};
%Y A379515 Cf. A034448, A064609, A308041, A323482, A370898, A379513, A379516 (denominators).
%K A379515 nonn,easy,frac
%O A379515 1,2
%A A379515 _Amiram Eldar_, Dec 23 2024