cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379516 Denominators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

This page as a plain text file.
%I A379516 #7 Dec 24 2024 07:27:44
%S A379516 1,3,12,60,60,5,40,360,360,120,120,120,840,140,840,14280,42840,42840,
%T A379516 42840,8568,34272,34272,34272,11424,148512,49504,7072,35360,106080,
%U A379516 318240,159120,1750320,109395,656370,5250960,26254800,498841200,498841200,3491888400,3491888400
%N A379516 Denominators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).
%H A379516 Amiram Eldar, <a href="/A379516/b379516.txt">Table of n, a(n) for n = 1..1000</a>
%H A379516 Olivier Bordellès and Benoit Cloitre, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Bordelles/bord14.html">An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.3. See p. 4, eq. (vi).
%H A379516 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.9, pp. 28-29.
%F A379516 a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).
%t A379516 usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
%o A379516 (PARI) usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
%o A379516 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(denominator(s), ", "))};
%Y A379516 Cf. A034448, A064609, A370898, A379514, A379515 (numerators).
%K A379516 nonn,easy,frac
%O A379516 1,2
%A A379516 _Amiram Eldar_, Dec 23 2024