cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379517 Numerators of the partial sums of the reciprocals of the unitary totient function (A047994).

This page as a plain text file.
%I A379517 #7 Dec 24 2024 07:27:22
%S A379517 1,2,5,17,37,43,15,109,225,239,1223,3809,1293,4019,1031,209,1693,1735,
%T A379517 5261,5345,5429,27649,306659,310619,312929,317549,4155857,4195897,
%U A379517 603091,615961,619393,19304143,19463731,1228951,9898103,4982299,1251116,2524397,10164083
%N A379517 Numerators of the partial sums of the reciprocals of the unitary totient function (A047994).
%H A379517 Amiram Eldar, <a href="/A379517/b379517.txt">Table of n, a(n) for n = 1..1000</a>
%H A379517 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018. See p. 52.
%H A379517 V. Sita Ramaiah and D. Suryanarayana, <a href="https://web.archive.org/web/20200803214209/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005bab_1334.pdf">Sums of reciprocals of some multiplicative functions - II</a>, Indian J. Pure Appl. Math., Vol. 11 (1980), pp. 1334-1355.
%H A379517 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.10, pp. 30-31.
%H A379517 Rimer Zurita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Zurita/zur3.html">Generalized Alternating Sums of Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 23 (2020), Article 20.10.4. See section 4.5, pp. 16-17.
%F A379517 a(n) = numerator(Sum_{k=1..n} 1/A047994(k)).
%F A379517 a(n)/A379518(n) = L * log(n) + M + O(log(n)^(5/3)/n), where L = A327837, M = L * (gamma - B + A1 + A2), gamma = A001620, B = Sum_{p prime} (1-1/p) * log(p) * Sum_{k>=1} k/(p^k*(p^k-1)) / A(p), A1 = Sum_{p prime} log(p)/(p^2*(p-1)*A(p)), A2 = Sum_{p prime} ((A*(p)(p)*log(p)/p^2), A(p) = 1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1)), and A*(p) = Sum_{k>=1} 1/(p^k*p^(k+1)-1)*A(p)) (Sita Ramaiah and Suryanarayana, 1980).
%e A379517 Fractions begin with 1, 2, 5/2, 17/6, 37/12, 43/12, 15/4, 109/28, 225/56, 239/56, 1223/280, 3809/840, ...
%t A379517 uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Numerator[Accumulate[Table[1/uphi[n], {n, 1, 50}]]]
%o A379517 (PARI) uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
%o A379517 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / uphi(k); print1(numerator(s), ", "))};
%Y A379517 Cf. A001620, A047994, A177754, A370899, A327837, A379518 (denominators), A379519.
%K A379517 nonn,easy,frac
%O A379517 1,2
%A A379517 _Amiram Eldar_, Dec 24 2024