cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379519 Numerators of the partial alternating sums of the reciprocals of the unitary totient function (A047994).

This page as a plain text file.
%I A379519 #7 Dec 24 2024 07:26:25
%S A379519 1,0,1,1,5,-1,1,-5,11,-31,-71,-211,-47,-281,-22,-29,-359,-569,-1427,
%T A379519 -1847,-1427,-1931,-18721,-22681,-20371,-24991,-297163,-37467,-34607,
%U A379519 -44617,-125843,-4141373,-3769001,-2117233,-327013,-2117233,-6041389,-6662009,-774568,-3297757
%N A379519 Numerators of the partial alternating sums of the reciprocals of the unitary totient function (A047994).
%H A379519 Amiram Eldar, <a href="/A379519/b379519.txt">Table of n, a(n) for n = 1..1000</a>
%H A379519 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.10, pp. 30-31.
%F A379519 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A047994(k)).
%F A379519 a(n)/A379520(n) = T * log(n) + U + O(log(n)^(5/3) / n^u), where u > 0, T = A327837 * (2/(A065442 + 1) - 1), and U is a constant.
%e A379519 Fractions begin with 1, 0, 1/2, 1/6, 5/12, -1/12, 1/12, -5/84, 11/168, -31/168, -71/840, -211/840, ...
%t A379519 uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/uphi[n], {n, 1, 50}]]]
%o A379519 (PARI) uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
%o A379519 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / uphi(k); print1(numerator(s), ", "))};
%Y A379519 Cf. A047994, A065442, A177754, A327837, A370899, A379517, A379520 (denominators).
%K A379519 sign,easy,frac
%O A379519 1,5
%A A379519 _Amiram Eldar_, Dec 24 2024