cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379536 Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A378142; see Comments.

This page as a plain text file.
%I A379536 #19 Jun 21 2025 19:58:42
%S A379536 1,6,2,7,12,3,11,14,18,4,13,17,21,25,5,16,20,24,39,28,8,19,23,36,55,
%T A379536 40,29,9,22,35,50,72,56,41,30,10,26,49,71,92,73,61,42,31,15,27,52,87,
%U A379536 103,93,78,62,45,32,33,34,54,102,124,104,94,79,65,46,47,166,37,58,113,135,125,105,97,84,66,99,179,618
%N A379536 Rectangular array, read by descending antidiagonals: the Type 1 runlength index array of A378142; see Comments.
%C A379536 We begin with a definition of Type 1 runlength array, U(s), of a sequence s:
%C A379536 Suppose s is a sequence (finite or infinite), and define rows of U(s) as follows:
%C A379536 (row 0) = s
%C A379536 (row 1) = sequence of 1st terms of runs in (row 0); c(1) = complement of (row 1) in (row 0)
%C A379536 For n>=2,
%C A379536 (row n) = sequence of 1st terms of runs in c(n-1); c(n) = complement of (row n) in (row n-1),
%C A379536 where the process stops if and when c(n) is empty for some n.
%C A379536 ***
%C A379536 The corresponding Type 1 runlength index array, UI(s) is now contructed from U(s) in two steps:
%C A379536 (1) Let U*(s) be the array obtaining by repeating the construction of U(s) using (n,s(n)) in place of s(n).
%C A379536 (2) Then UI(s) results by retaining only n in U*.
%C A379536 Thus, loosely speaking, (row n) of UI(s) shows the indices in s of the numbers in (row n) of U(s).
%C A379536 The array UI(s) includes every positive integer exactly once.
%e A379536 Corner:
%e A379536      1    6    7    11    13    16    19    22    26    27    34    37
%e A379536      2   12   14    17    20    23    35    49    52    54    58    60
%e A379536      3   18   21    24    36    50    71    87   102   113   116   119
%e A379536      4   25   39    55    72    92   103   124   135   157   170   187
%e A379536      5   28   40    56    73    93   104   125   136   160   171   188
%e A379536      8   29   41    61    78    94   105   128   137   161   172   193
%e A379536      9   30   42    62    79    97   108   129   140   162   173   194
%e A379536     10   31   45    65    84    98   109   130   141   163   174   197
%e A379536     15   32   46    66   110   131   142   164   177   198   216   231
%e A379536     33   47   99   147   165   178   199   248   297   310   333   417
%e A379536    166  179  232   285   298   311   498   549   564   581   631   750
%e A379536    618  830  882  1262  1342  1561  1976  3056  3767  4616  5459  6112
%e A379536 Starting with s = A000002, we have for U*(s):
%e A379536 (row 1) = ((1,1), (2,1), (3,1), (4,1), (5,1), (6,0), (7,1), (8,1), (9,1), (10,1), (11,0) ...)
%e A379536 c(1) = ((2,1), (3,1), (4,1), (5,1), (8,1), (9,1), (10,1), (12,0), (14,1), (15,1), ...)
%e A379536 (row 2) = ((2,1), (12,2), (14,1), (17,0), (20,1), (22,0), (34,1), ...)
%e A379536 c(2) = ((3,1), (4,1), (5,1), (8,1), (9,1), (10,1), (15,1), (18,0), ...)
%e A379536 (row 3) = ((3,1), (18,0), (21,1), (24,0), ...)
%e A379536 so that UI(s) has
%e A379536 (row 1) = (1,6,7,11,13,16,19....)
%e A379536 (row 2) = (2,12,14,17,20,23,...)
%e A379536 (row 3) = (3,18,21,24,36,...)
%t A379536 r[seq_] := seq[[Flatten[Position[Prepend[Differences[seq[[All, 1]]], 1], _?(# != 0 &)]], 2]];
%t A379536 z = 8000; r1 = 2^(1/4); s1 = 2^(1/2); t1 = 2^(3/4);
%t A379536 row[0] = Table[Floor[n (r1 + t1)/s1] - Floor[n  r1/s1] - Floor[n  t1/s1], {n, 1, z}];
%t A379536 row[0] = Transpose[{#, Range[Length[#]]}] &[row[0]];
%t A379536 k = 0; Quiet[While[Head[row[k]] === List, row[k + 1] = row[0][[r[SortBy[Apply[Complement,
%t A379536         Map[row[#] &, Range[0, k]]], #[[2]] &]]]]; k++]];
%t A379536 m = Map[Map[#[[2]] &, row[#]] &, Range[k - 1]];
%t A379536 zz = 12
%t A379536 p[n_] := Take[m[[n]], zz]
%t A379536 t = Table[p[n], {n, 1, zz}]
%t A379536 Grid[t]  (* array *)
%t A379536 w[n_, k_] := t[[n]][[k]];
%t A379536 Table[w[n - k + 1, k], {n, zz}, {k, n, 1, -1}] // Flatten  (* sequence *)
%t A379536 (* _Peter J.C.Moses_,Dec 04 2024 *)
%Y A379536 Cf. A000002, A379046, A378142.
%K A379536 nonn,tabl
%O A379536 1,2
%A A379536 _Clark Kimberling_, Jan 11 2025