A379538 Square array read by ascending antidiagonals: T(n,k) is the k-th frugal number in base n.
1, 1, 27, 1, 32, 32, 1, 27, 49, 49, 1, 27, 64, 64, 64, 1, 81, 81, 81, 81, 81, 1, 64, 125, 125, 121, 98, 121, 1, 64, 81, 243, 128, 125, 121, 125, 1, 81, 81, 125, 250, 162, 128, 125, 128, 1, 125, 125, 125, 243, 256, 169, 169, 128, 135, 1, 125, 128, 128, 128, 343, 289, 243, 243, 169, 147
Offset: 2
Examples
Array begins: n\k| 1 2 3 4 5 6 7 8 9 10 ... --------------------------------------------------------- 2 | 1, 27, 32, 49, 64, 81, 121, 125, 128, 135, ... = A379537 3 | 1, 32, 49, 64, 81, 98, 121, 125, 128, 169, ... 4 | 1, 27, 64, 81, 121, 125, 128, 169, 243, 256, ... 5 | 1, 27, 81, 125, 128, 162, 169, 243, 256, 289, ... 6 | 1, 81, 125, 243, 250, 256, 289, 343, 361, 375, ... 7 | 1, 64, 81, 125, 243, 343, 361, 375, 405, 486, ... 8 | 1, 64, 81, 125, 128, 243, 343, 512, 529, 567, ... 9 | 1, 81, 125, 128, 243, 256, 343, 625, 729, 768, ... 10 | 1, 125, 128, 243, 256, 343, 512, 625, 729, 1024, ... = A046759 (without the initial 1) ... | \______ A379539 (main diagonal) A377478 T(2,10) = 135 because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8); and 135 is the tenth number with this property.
Links
- Richard G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
- Giovanni Resta, Frugal numbers, Numbers Aplenty, 2013.
- Wikipedia, Frugal number.
Crossrefs
Programs
-
Mathematica
Module[{dmax = 15, a, m}, a = Table[m = 0; Table[While[Total[IntegerLength[Select[Flatten[FactorInteger[++m]], # > 1 &], n]] >= IntegerLength[m, n]]; m, dmax-n+2], {n, dmax+1, 2, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
Comments