This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379552 #9 Dec 28 2024 09:14:20 %S A379552 1,1,1,2,1,1,2,2,1,2,1,1,3,2,2,1,2,1,1,2,3,4,2,1,1,1,1,3,1,1,1,2,2,1, %T A379552 4,4,3,1,1,3,1,1,1,2,3,1,1,2,2,4,1,2,1,3,4,1,2,6,1,3,1,3,1,1,2,1,1,1, %U A379552 1,2,1,4,2,2,1,2,3,1,4,2,1,1,2,1,1,3,4 %N A379552 Number of pairs (d, k/d), d < k/d, such that d|k, rad(d) = rad(k/d) = rad(k), but d|k/d, for k = A376936(n), where rad = A007947. %C A379552 In other words, one half the number of coreful complementary divisor pairs (d, k/d), d|k, that do not divide one another, for k in A376936, the sequence of numbers k that have at least 1 such pair. %C A379552 Divisors d and k/d are both composite, further, are neither squarefree nor prime powers, hence in A126706. %H A379552 Michael De Vlieger, <a href="/A379552/b379552.txt">Table of n, a(n) for n = 1..10000</a> %e A379552 Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Examples below show only (d, k/d) that have property Q: %e A379552 a(1) = 1 since b(1) = 216 = 12*18. %e A379552 a(2) = 1 since b(2) = 432 = 18*24. %e A379552 a(3) = 1 since b(3) = 648 = 12*54. %e A379552 a(4) = 2 since b(4) = 864 = 18*48 = 24*36. %e A379552 a(14) = 3 since b(14) = 3456 = 18*192 = 36*96 = 48*72. %e A379552 a(22) = 4 since b(22) = 7776 = 24*324 = 48*162 = 54*144 = 72*108, etc. %t A379552 nn = 2^16; %t A379552 rad[x_] := Times @@ FactorInteger[x][[All, 1]]; %t A379552 s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], %t A379552 Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; %t A379552 Table[k = s[[n]]; %t A379552 Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2] ]] &@ Divisors[k], %t A379552 _?(And[1 < GCD @@ {##}, %t A379552 rad[#1] == rad[#2], %t A379552 Mod[#1, #2] != 0, %t A379552 Mod[#2, #1] != 0] & @@ # &)], {n, Length[s]}] %Y A379552 Cf. A007947, A126706, A376936, A379553, A379554. %K A379552 nonn,easy %O A379552 1,4 %A A379552 _Michael De Vlieger_, Dec 25 2024