This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379553 #8 Dec 30 2024 17:09:44 %S A379553 216,864,3456,7776,31104,124416,279936,497664,972000,1944000,3888000, %T A379553 7776000,11664000,15552000,31104000,34992000,46656000,62208000, %U A379553 77760000,97200000,194400000,291600000,388800000,777600000,874800000,1166400000,1555200000,3110400000,3499200000 %N A379553 Numbers k in A376936 that set records in A379552. %C A379553 Proper subset of A025487. %H A379553 Michael De Vlieger, <a href="/A379553/b379553.txt">Table of n, a(n) for n = 1..212</a> (a(n) <= A002110(19).) %H A379553 Michael De Vlieger, <a href="/A379553/a379553.txt">Prime power decomposition of a(n)</a>, n = 1..212. %e A379553 Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Table below shows prime power decomposition of a(n), n = 1..12, writing only exponents in the "exp." column: %e A379553 n a(n) exp. b(n) (d,a(n)/d) with property Q %e A379553 ----------------------------------------------------------------- %e A379553 1 216 3.3 1 (12,18) %e A379553 2 864 5.3 2 (18,48), (24,36) %e A379553 3 3456 7.3 3 (18,192), (36,96), (48,72) %e A379553 4 7776 5.5 4 (24,324), (48,162), (54,144), (72,108) %e A379553 5 31104 7.5 6 %e A379553 6 124416 9.5 8 %e A379553 7 279936 7.7 9 %e A379553 8 497664 11.5 10 %e A379553 9 972000 5.5.3 12 %e A379553 10 1944000 6.5.3 14 %e A379553 11 3888000 7.5.3 18 %e A379553 12 7776000 8.5.3 20 %e A379553 See expanded table in links. %t A379553 r = 0; nn = 10^9; %t A379553 rad[x_] := Times @@ FactorInteger[x][[All, 1]]; %t A379553 s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; nn = Length[s]; %t A379553 Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@ %t A379553 Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k], %t A379553 _?(And[1 < GCD @@ {##}, %t A379553 rad[#1] == rad[#2], %t A379553 Mod[#1, #2] != 0, %t A379553 Mod[#2, #1] != 0] & @@ # &)], {i, nn}] ][[-1, 1]] %Y A379553 Cf. A376936, A379552, A379554. %K A379553 nonn %O A379553 1,1 %A A379553 _Michael De Vlieger_, Dec 25 2024