cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379553 Numbers k in A376936 that set records in A379552.

This page as a plain text file.
%I A379553 #8 Dec 30 2024 17:09:44
%S A379553 216,864,3456,7776,31104,124416,279936,497664,972000,1944000,3888000,
%T A379553 7776000,11664000,15552000,31104000,34992000,46656000,62208000,
%U A379553 77760000,97200000,194400000,291600000,388800000,777600000,874800000,1166400000,1555200000,3110400000,3499200000
%N A379553 Numbers k in A376936 that set records in A379552.
%C A379553 Proper subset of A025487.
%H A379553 Michael De Vlieger, <a href="/A379553/b379553.txt">Table of n, a(n) for n = 1..212</a> (a(n) <= A002110(19).)
%H A379553 Michael De Vlieger, <a href="/A379553/a379553.txt">Prime power decomposition of a(n)</a>, n = 1..212.
%e A379553 Let b(n) = A376936(n) and define property Q pertaining to (d, k/d), d|k, to be rad(d) = rad(k/d) = rad(k) but neither d | k/d nor k/d | d. Table below shows prime power decomposition of a(n), n = 1..12, writing only exponents in the "exp." column:
%e A379553    n       a(n)   exp.   b(n)  (d,a(n)/d) with property Q
%e A379553   -----------------------------------------------------------------
%e A379553    1       216    3.3      1   (12,18)
%e A379553    2       864    5.3      2   (18,48), (24,36)
%e A379553    3      3456    7.3      3   (18,192), (36,96), (48,72)
%e A379553    4      7776    5.5      4   (24,324), (48,162), (54,144), (72,108)
%e A379553    5     31104    7.5      6
%e A379553    6    124416    9.5      8
%e A379553    7    279936    7.7      9
%e A379553    8    497664   11.5     10
%e A379553    9    972000    5.5.3   12
%e A379553   10   1944000    6.5.3   14
%e A379553   11   3888000    7.5.3   18
%e A379553   12   7776000    8.5.3   20
%e A379553 See expanded table in links.
%t A379553 r = 0; nn = 10^9;
%t A379553 rad[x_] := Times @@ FactorInteger[x][[All, 1]];
%t A379553 s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],  Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; nn = Length[s];
%t A379553 Reap[Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@
%t A379553   Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
%t A379553     _?(And[1 < GCD @@ {##},
%t A379553     rad[#1] == rad[#2],
%t A379553     Mod[#1, #2] != 0,
%t A379553     Mod[#2, #1] != 0] & @@ # &)], {i, nn}] ][[-1, 1]]
%Y A379553 Cf. A376936, A379552, A379554.
%K A379553 nonn
%O A379553 1,1
%A A379553 _Michael De Vlieger_, Dec 25 2024