cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379579 Numerators of the partial sums of the reciprocals of the powerfree part function (A055231).

This page as a plain text file.
%I A379579 #7 Dec 26 2024 20:02:19
%S A379579 1,3,11,17,91,16,117,152,187,381,4261,13553,178499,90322,30441,35446,
%T A379579 607587,1300259,24875091,25521737,77027101,38733998,895731799,
%U A379579 932913944,1044460379,2097501253,2320594123,2352464533,68444564327,11443370128,355822756173,389249504528
%N A379579 Numerators of the partial sums of the reciprocals of the powerfree part function (A055231).
%D A379579 D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.
%H A379579 Amiram Eldar, <a href="/A379579/b379579.txt">Table of n, a(n) for n = 1..1000</a>
%H A379579 Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d'un nombre</a>, Thèse de doctorat, Université Laval, Québec (2018).
%H A379579 Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
%H A379579 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
%F A379579 a(n) = numerator(Sum_{k=1..n} 1/A055231(k)).
%F A379579 a(n)/A379580(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = A328013, and B = (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = -2.59305556147555965163... .
%e A379579 Fractions begin with 1, 3/2, 11/6, 17/6, 91/30, 16/5, 117/35, 152/35, 187/35, 381/70, 4261/770, 13553/2310, ...
%t A379579 f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
%o A379579 (PARI) powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
%o A379579 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(numerator(s), ", "))};
%Y A379579 Cf. A055231, A328013, A370900, A370901, A379580 (denominators), A379581.
%K A379579 nonn,easy,frac
%O A379579 1,2
%A A379579 _Amiram Eldar_, Dec 26 2024