cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379580 Denominators of the partial sums of the reciprocals of the powerfree part function (A055231).

This page as a plain text file.
%I A379580 #6 Dec 26 2024 20:02:30
%S A379580 1,2,6,6,30,5,35,35,35,70,770,2310,30030,15015,5005,5005,85085,170170,
%T A379580 3233230,3233230,9699690,4849845,111546435,111546435,111546435,
%U A379580 223092870,223092870,223092870,6469693230,1078282205,33426748355,33426748355,9116385915,18232771830
%N A379580 Denominators of the partial sums of the reciprocals of the powerfree part function (A055231).
%D A379580 D. Suryanarayana and P. Subrahmanyam, The maximal k-full divisor of an integer, Indian J. Pure Appl. Math., Vol. 12, No. 2 (1981), pp. 175-190.
%H A379580 Amiram Eldar, <a href="/A379580/b379580.txt">Table of n, a(n) for n = 1..1000</a>
%H A379580 Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d'un nombre</a>, Thèse de doctorat, Université Laval, Québec (2018).
%H A379580 Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
%H A379580 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
%F A379580 a(n) = denominator(Sum_{k=1..n} 1/A055231(k)).
%t A379580 f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powfree[n], {n, 1, 50}]]]
%o A379580 (PARI) powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
%o A379580 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powfree(k); print1(denominator(s), ", "))};
%Y A379580 Cf. A055231, A370900, A370901, A379579 (numerators), A379582.
%K A379580 nonn,easy,frac
%O A379580 1,2
%A A379580 _Amiram Eldar_, Dec 26 2024