cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379581 Numerators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).

This page as a plain text file.
%I A379581 #8 Dec 26 2024 20:02:40
%S A379581 1,1,5,-1,1,-2,1,-104,1,-19,1,-769,-7687,-4916,-261,-1262,-20453,
%T A379581 -57923,-1066503,-5979161,-17475593,-8958244,-201189767,-79457304,
%U A379581 -42275159,-87410483,-13046193,-23669663,-612055937,-1025912126,-28568429291,-128848674356,-125809879051
%N A379581 Numerators of the partial alternating sums of the reciprocals of the powerfree part function (A055231).
%H A379581 Amiram Eldar, <a href="/A379581/b379581.txt">Table of n, a(n) for n = 1..1000</a>
%H A379581 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32.
%F A379581 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)).
%F A379581 a(n)/A379582(n) = A * n^(1/2) + B * n^(1/3) + O(n^(1/5)), where A = ((9-12*sqrt(2))/23) * A328013, and B = ((2^(5/3) - 3*2^(1/3) - 1)/(2^(5/3) - 2^(1/3) + 1)) * (zeta(2/3)/zeta(2)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = 1.42776088919948241359... .
%e A379581 Fractions begin with 1, 1/2, 5/6, -1/6, 1/30, -2/15, 1/105, -104/105, 1/105, -19/210, 1/2310, -769/2310, ...
%t A379581 f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]]
%o A379581 (PARI) powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); }
%o A379581 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(numerator(s), ", "))};
%Y A379581 Cf. A055231, A328013, A370900, A370901, A379579, A379582 (denominators).
%K A379581 sign,easy,frac
%O A379581 1,3
%A A379581 _Amiram Eldar_, Dec 26 2024