This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379582 #6 Dec 26 2024 20:02:49 %S A379582 1,2,6,6,30,15,105,105,105,210,2310,2310,30030,15015,1001,1001,17017, %T A379582 34034,646646,3233230,9699690,4849845,111546435,37182145,37182145, %U A379582 74364290,74364290,74364290,2156564410,3234846615,100280245065,100280245065,100280245065,200560490130 %N A379582 Denominators of the partial alternating sums of the reciprocals of the powerfree part function (A055231). %H A379582 Amiram Eldar, <a href="/A379582/b379582.txt">Table of n, a(n) for n = 1..1000</a> %H A379582 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.11, pp. 31-32. %F A379582 a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A055231(k)). %t A379582 f[p_, e_] := If[e==1, p, 1]; powfree[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/powfree[n], {n, 1, 50}]]] %o A379582 (PARI) powfree(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] == 1, f[i, 1], 1)); } %o A379582 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powfree(k); print1(denominator(s), ", "))}; %Y A379582 Cf. A055231, A370900, A370901, A379580, A379581 (numerators). %K A379582 nonn,easy,frac %O A379582 1,2 %A A379582 _Amiram Eldar_, Dec 26 2024