cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379583 Numerators of the partial sums of the reciprocals of the powerful part function (A057521).

This page as a plain text file.
%I A379583 #6 Dec 26 2024 20:02:58
%S A379583 1,2,3,13,17,21,25,51,467,539,611,629,701,773,845,1699,1843,1859,2003,
%T A379583 2039,2183,2327,2471,2489,62369,65969,198307,201007,211807,222607,
%U A379583 233407,467489,489089,510689,532289,532889,554489,576089,597689,600389,621989,643589,665189
%N A379583 Numerators of the partial sums of the reciprocals of the powerful part function (A057521).
%H A379583 Amiram Eldar, <a href="/A379583/b379583.txt">Table of n, a(n) for n = 1..1000</a>
%H A379583 Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d'un nombre</a>, Thèse de doctorat, Université Laval, Québec (2018).
%H A379583 Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
%H A379583 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
%F A379583 a(n) = numerator(Sum_{k=1..n} 1/A057521(k)).
%F A379583 a(n)/A379584(n) = c * n + O(n^(1/2)), where c = A191622 (Cloutier et al., 2014). The error term was improved by Tóth (2017) to O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.
%e A379583 Fractions begin with 1, 2, 3, 13/4, 17/4, 21/4, 25/4, 51/8, 467/72, 539/72, 611/72, 629/72, ...
%t A379583 f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
%o A379583 (PARI) powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
%o A379583 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(numerator(s), ", "))};
%Y A379583 Cf. A057521, A191622, A370902, A370903, A379584 (denominators), A379585.
%K A379583 nonn,easy,frac
%O A379583 1,2
%A A379583 _Amiram Eldar_, Dec 26 2024