cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379584 Denominators of the partial sums of the reciprocals of the powerful part function (A057521).

This page as a plain text file.
%I A379584 #6 Dec 26 2024 20:03:05
%S A379584 1,1,1,4,4,4,4,8,72,72,72,72,72,72,72,144,144,144,144,144,144,144,144,
%T A379584 144,3600,3600,10800,10800,10800,10800,10800,21600,21600,21600,21600,
%U A379584 21600,21600,21600,21600,21600,21600,21600,21600,21600,21600,21600,21600,21600,1058400
%N A379584 Denominators of the partial sums of the reciprocals of the powerful part function (A057521).
%H A379584 Amiram Eldar, <a href="/A379584/b379584.txt">Table of n, a(n) for n = 1..1000</a>
%H A379584 Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d'un nombre</a>, Thèse de doctorat, Université Laval, Québec (2018).
%H A379584 Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences, Vol. 17 (2014), Article 14.6.6.
%H A379584 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
%F A379584 a(n) = denominator(Sum_{k=1..n} 1/A057521(k)).
%t A379584 f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/powful[n], {n, 1, 50}]]]
%o A379584 (PARI) powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
%o A379584 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / powerful(k); print1(denominator(s), ", "))};
%Y A379584 Cf. A057521, A370902, A370903, A379583 (numerators), A379586.
%K A379584 nonn,easy,frac
%O A379584 1,4
%A A379584 _Amiram Eldar_, Dec 26 2024