cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379585 Numerators of the partial alternating sums of the reciprocals of the powerful part function (A057521).

This page as a plain text file.
%I A379585 #6 Dec 26 2024 20:03:13
%S A379585 1,0,1,3,7,3,7,13,125,53,125,107,179,107,179,349,493,53,69,65,81,65,
%T A379585 81,79,1991,1591,43357,40657,51457,40657,51457,102239,123839,102239,
%U A379585 123839,123239,144839,123239,144839,142139,163739,142139,163739,158339,160739,139139
%N A379585 Numerators of the partial alternating sums of the reciprocals of the powerful part function (A057521).
%H A379585 Amiram Eldar, <a href="/A379585/b379585.txt">Table of n, a(n) for n = 1..1000</a>
%H A379585 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
%F A379585 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).
%F A379585 a(n)/A379586(n) = (5/19) * A191622 * n + O(n^(1/2) * exp(-c1 * log(n)^(3/5) / log(log(n))^(1/5))) unconditionally, and with an improved error term O(n^(2/5) * exp(c2 * log(n) / log(log(n)))) assuming the Riemann hypothesis, where c1 and c2 are positive constants.
%e A379585 Fractions begin with 1, 0, 1, 3/4, 7/4, 3/4, 7/4, 13/8, 125/72, 53/72, 125/72, 107/72, ...
%t A379585 f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
%o A379585 (PARI) powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); }
%o A379585 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(numerator(s), ", "))};
%Y A379585 Cf. A057521, A191622, A370902, A370903, A379583, A379586 (denominators).
%K A379585 nonn,easy,frac
%O A379585 1,4
%A A379585 _Amiram Eldar_, Dec 26 2024