A379586 Denominators of the partial alternating sums of the reciprocals of the powerful part function (A057521).
1, 1, 1, 4, 4, 4, 4, 8, 72, 72, 72, 72, 72, 72, 72, 144, 144, 16, 16, 16, 16, 16, 16, 16, 400, 400, 10800, 10800, 10800, 10800, 10800, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 21600, 1058400
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.12, p. 33.
Programs
-
Mathematica
f[p_, e_] := If[e > 1, p^e, 1]; powful[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/powful[n], {n, 1, 50}]]]
-
PARI
powerful(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] > 1, f[i, 1]^f[i, 2], 1)); } list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / powerful(k); print1(denominator(s), ", "))};
Formula
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A057521(k)).