This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379589 #7 Dec 26 2024 19:58:56 %S A379589 1,31,800,6466,60778,441492,3216584,18693320 %N A379589 Maximum number of connections for a 4 X n rectangle. %C A379589 In a 4 X n board (with n > 1) with numbers 1, 2 3 and 4, at least 2 of each, find the arrangement with more solutions connecting a pair of numbers 1, a pair of number 2, a pair of number 3 and a pair of number 4, covering the entire board and without passing through the same square twice. %C A379589 Terms a(5)-a(9) from Giorgio Vecchi. %H A379589 Rodolfo Kurchan and Claudio Meller, Number Connections, Puzzle Fun, Problems (2024). %e A379589 For n = 2 with the board %e A379589 +---+---+ %e A379589 | 1 | 1 | %e A379589 +---+---+ %e A379589 | 2 | 2 | %e A379589 +---+---+ %e A379589 | 3 | 3 | %e A379589 +---+---+ %e A379589 | 4 | 4 | %e A379589 +---+---+ %e A379589 There is only 1 solution being the squares with these letters: %e A379589 +---+---+ %e A379589 | A | B | %e A379589 +---+---+ %e A379589 | C | D | %e A379589 +---+---+ %e A379589 | E | F | %e A379589 +---+---+ %e A379589 | G | H | %e A379589 +---+---+ %e A379589 Solution: %e A379589 1) AB - CD - EF - GH %e A379589 There is one solution so a(2) = 1. %e A379589 . %e A379589 For n = 3 with the board %e A379589 +---+---+---+ %e A379589 | 1 | 2 | 2 | %e A379589 +---+---+---+ %e A379589 | 1 | 2 | 2 | %e A379589 +---+---+---+ %e A379589 | 3 | 4 | 4 | %e A379589 +---+---+---+ %e A379589 | 3 | 4 | 4 | %e A379589 +---+---+---+ %e A379589 the maximum number of solutions is 31 being the squares with these letters: %e A379589 +---+---+---+ %e A379589 | A | B | C | %e A379589 +---+---+---+ %e A379589 | D | E | F | %e A379589 +---+---+---+ %e A379589 | G | H | I | %e A379589 +---+---+---+ %e A379589 | J | K | L | %e A379589 +---+---+---+ %e A379589 Solutions: %e A379589 1) AD - GJ - BC - HEFILK %e A379589 2) AD - GJ - BC - IFEHKL %e A379589 3) AD - GJ - BC - KHEFIL %e A379589 4) AD - GJ - KL - EHIFCB %e A379589 5) AD - GJ - KL - FIHEBC %e A379589 6) AD - GJ - KL - BEHIFC %e A379589 7) AD - GJ - BCFE - HILK %e A379589 8) AD - GJ - BCFE - ILKH %e A379589 9) AD - GJ - BCFE - LKHI %e A379589 10) AD - GJ - BCFE - KHIL %e A379589 11) AD - GJ - CFEB - HILK %e A379589 12) AD - GJ - CFEB - ILKH %e A379589 13) AD - GJ - CFEB - LKHI %e A379589 14) AD - GJ - CFEB - KHIL %e A379589 15) AD - GJ - FEBC - HILK %e A379589 16) AD - GJ - FEBC - ILKH %e A379589 17) AD - GJ - FEBC - LKHI %e A379589 18) AD - GJ - FEBC - KHIL %e A379589 19) AD - GJ - EBCF - HILK %e A379589 20) AD - GJ - EBCF - ILKH %e A379589 21) AD - GJ - EBCF - LKHI %e A379589 22) AD - GJ - EBCF - KHIL %e A379589 23) ABED - GJ - CF - HILK %e A379589 24) ABED - GJ - CF - ILKH %e A379589 25) ABED - GJ - CF - LKHI %e A379589 26) ABED - GJ - CF - KHIL %e A379589 27) GHKJ - AD - IL - BCFE %e A379589 28) GHKJ - AD - IL - CFEB %e A379589 29) GHKJ - AD - IL - FEBC %e A379589 30) GHKJ - AD - IL - EBCF %e A379589 31) ABED - GHKJ - CF - IL %e A379589 There are 31 solutions so a(3) = 31. %Y A379589 Cf. A379241, A379393. %K A379589 nonn,more %O A379589 2,2 %A A379589 _Rodolfo Kurchan_, Dec 26 2024