A379593 Numbers that set records in A379592.
8, 32, 128, 512, 2048, 8192, 20736, 41472, 82944, 165888, 186624, 373248, 746496, 1492992, 2985984, 5971968, 6718464, 11943936, 23887872, 26873856, 53747712, 107495424, 214990848, 241864704, 429981696, 859963392, 967458816, 1719926784, 3439853568, 3869835264, 7464960000
Offset: 1
Keywords
Examples
Let b(n) = A379592(n). Table showing exponents of prime power factors of a(n) for n = 1..12. Example: a(7) = 20736 = 2^8*3^4, so "8.4" appears in the "exp." column. n a(n) exp. b(a(n)) -------------------------- 1 8 3 1 2*4 2 32 5 2 2*16 = 4*8 3 128 7 3 2*64 = 4*32 = 8*16 4 512 9 4 2*256 = 4*128 = 8*64 = 16*32 5 2048 11 5 2*1024 = 4*512 = 8*256 = 16*128 = 32=64 6 8192 13 6 2*4096 = 4*2048 = 8*1024 = 16*512 = 32*256 = 64*128 7 20736 8.4 7 8 41472 9.4 8 9 82944 10.4 9 10 165888 11.4 10 11 186624 8.6 11 12 373248 9.6 12
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..119
- Michael De Vlieger, Prime power decomposition of a(n), n = 1..119.
Programs
-
Mathematica
(* Load function f at A025487 *) r = 0; s = Union@ Flatten@ f[10]; nn = Length[s]; rad[x_] := Times @@ FactorInteger[x][[All, 1]]; Transpose@ Reap[Monitor[ Do[k = s[[i]]; If[# > r, r = #; Sow[k]] &@ Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k], _?(And[rad[#1] == rad[#2], Xor[Divisible[#2, #1], Divisible[#1, #2]]] & @@ # &)], {i, nn}], {i, nn}] ][[-1, 1]]
Comments