This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379595 #4 Jan 07 2025 10:21:33 %S A379595 0,385,386,387,390,392,404,405,406 %N A379595 Numbers k for which A376900(k) = k. %C A379595 The primitive Pythagorean triples cause A376900(n) to grow slightly overproportionally in relation to n, apart from minor fluctuations. This is why this sequence is finite and full. %H A379595 Felix Huber, <a href="/A379595/a379595.txt">Right Triangles belonging to A376900(k)=k</a> %p A379595 A379595:=proc(k) %p A379595 local a,p,q,v,m; %p A379595 a:=0; %p A379595 for p from 2 to evalf(sqrt(sqrt(2)*k+1)) do %p A379595 for q from 1 to min(p-1,floor(k/(sqrt(2)*p))) do %p A379595 if gcd(p,q)=1 and is(p+q,odd) then %p A379595 v:=max(p^2-q^2,2*p*q); %p A379595 m:=min(p^2-q^2,2*p*q)/v; %p A379595 a:=a+floor(k/v*sqrt(m^2-2*m+2)); %p A379595 fi %p A379595 od %p A379595 od; %p A379595 if a=k then %p A379595 return k %p A379595 fi %p A379595 end proc; %p A379595 seq(A379595(k),k=0..1000); %Y A379595 Cf. A376900. %K A379595 nonn,fini,full %O A379595 1,2 %A A379595 _Felix Huber_, Dec 26 2024