cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379600 a(n) is the semiperimeter of the primitive Pythagorean triangle (x(n), y(n), z(n)) with x(n) < y(n) < z(n) and x(n) > x(n-1), y(n) > y(n-1), z(n) > z(n-1), which has the smallest perimeter (if there are several triangles with smallest perimeter: the one of these with the smallest area), starting from a(1) = (3 + 4 + 5)/2 = 6.

This page as a plain text file.
%I A379600 #34 Mar 05 2025 18:59:59
%S A379600 6,15,20,35,63,77,99,104,130,165,204,247,266,336,345,391,425,450,513,
%T A379600 580,609,651,713,805,825,888,945,1036,1107,1204,1271,1376,1457,1530,
%U A379600 1617,1645,1764,1887,1961,2014,2090,2280,2337,2419,2537,2562,2684,2772,2990,3149
%N A379600 a(n) is the semiperimeter of the primitive Pythagorean triangle (x(n), y(n), z(n)) with x(n) < y(n) < z(n) and x(n) > x(n-1), y(n) > y(n-1), z(n) > z(n-1), which has the smallest perimeter (if there are several triangles with smallest perimeter: the one of these with the smallest area), starting from a(1) = (3 + 4 + 5)/2 = 6.
%C A379600 Conjecture: There is no primitive Pythagorean triangle that has a smaller semiperimeter than a(n) that can be drawn around the primitive Pythagorean triangle (x(n-1), y(n-1), z(n-1)) without touching it.
%C A379600 Subsequence of A020886.
%H A379600 Felix Huber, <a href="/A379600/b379600.txt">Table of n, a(n) for n = 1..3257</a>
%H A379600 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimitivePythagoreanTriple.html">Primitive Pythagorean Triple</a>
%H A379600 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>
%e A379600 (8, 15, 17) is the primitive Pythagorean triangle with semiperimeter a(3) = 20. (20, 21, 29) is the primitive Pythagorean triangle with semiperimeter a(4) = 35 because 20 > 8, 21 > 15, 29 > 17 and there is no other primitive Pythagorean triangle with perimeter <= 70 satisfying this criterium. For example, the primitive Pythagorean triangle (7, 24, 25) has the perimeter 56 but 7 < 8.
%p A379600 A379600:=proc(S) # to get all terms <= S
%p A379600     local p,q,i,L,M;
%p A379600     L:=[];
%p A379600     M:=[[3,4,5,6,6]];
%p A379600     for p from 3 to floor((sqrt(4*S+1)-1)/2) do
%p A379600         for q to min(p-1,S/p-p) do
%p A379600             if gcd(p,q)=1 and is(p-q,odd) then
%p A379600                 L:=[op(L),[min(p^2-q^2,2*p*q),max(p^2-q^2,2*p*q),p^2+q^2,p*(p+q),(p^2-q^2)*p*q]];
%p A379600             fi
%p A379600         od
%p A379600     od;
%p A379600     L:=sort(sort(L,(x,y)->x[5]<=y[5]),(x,y)->x[4]<=y[4]);
%p A379600     for i in L do
%p A379600         if i[1]>M[nops(M),1] and i[2]>M[nops(M),2] and i[3]>M[nops(M),3] then
%p A379600             M:=[op(M),i]
%p A379600         fi
%p A379600     od;
%p A379600     return seq(M[i,4],i=1..nops(M))
%p A379600 end proc;
%p A379600 A379600(3149);
%p A379600 # 3 lines above: change 4 to 3 for hypotenuses, to 2 for long legs and to 1 for short legs, to 5 for areas
%Y A379600 Cf. A010814, A020886, A118858.
%K A379600 nonn
%O A379600 1,1
%A A379600 _Felix Huber_, Feb 15 2025