This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379602 #18 Jan 11 2025 19:14:43 %S A379602 3,26,264,3114,25824,260167,2639867,25845676,260147437,2582245083, %T A379602 25843178924,258241744863,2582010592114,25825761924437, %U A379602 258218875510676,2581990857627114,25820083014911063,258199298347206526,2581988959445543367,25819892911624938937,258198891881411585714 %N A379602 a(n) is the least n-digit number whose square contains only digits greater than 5. %C A379602 Exists for all n because A379603(n) does (see Formulas there). - _Michael S. Branicky_, Dec 30 2024 %e A379602 a(3) = 264 because among all 3-digit numbers, 264 is the smallest whose square 69696 contains only digits greater than 5. %t A379602 f[m_] := For[k = Ceiling@Sqrt[100^m/15], k < 10^m - 1, k++, If[Min@IntegerDigits[k^2] > 5, Return[k];]]; Table[f[m], {m, 10}] %Y A379602 Cf. A053972, A053974, A058471, A164778, A164772, A164773, A164841, A291631, A379603. %K A379602 nonn,base %O A379602 1,1 %A A379602 _Zhining Yang_, Dec 27 2024 %E A379602 a(9) corrected and a(11) inserted by _Michael S. Branicky_, Dec 27 2024 %E A379602 More terms from _Jinyuan Wang_, Dec 27 2024