This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379610 #7 Feb 16 2025 08:34:07 %S A379610 1,16,2576,1383568,873960976,615833930816,526152430612496, %T A379610 502263183380000576,507670642053018634768,542989589742114444434176, %U A379610 609997002301177503142835776,710665335270156912049219940096,853208134042451055649274133396496,1051685299255545900736463773134099328 %N A379610 a(n) = Sum_{j=0..n} binomial(2*j,j)^4 * binomial(n,j)^2 * Sum_{k=0..n} binomial(k+j,k-j)^2 * binomial(2*j,n-k) * binomial(2*j,k-j). %H A379610 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SchmidtsProblem.html">Schmidt's Problem</a> %F A379610 A092815(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * a(k). %o A379610 (PARI) a(n) = sum(j=0, n, binomial(2*j, j)^4*binomial(n, j)^2*sum(k=0, n, binomial(k+j, k-j)^2*binomial(2*j, n-k)*binomial(2*j, k-j))); %Y A379610 Fifth row of array A094424. %Y A379610 Cf. A092815. %K A379610 nonn %O A379610 0,2 %A A379610 _Seiichi Manyama_, Dec 27 2024