cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379615 Numerators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

This page as a plain text file.
%I A379615 #8 Dec 28 2024 09:11:16
%S A379615 1,4,19,107,39,61,259,89,93,857,887,181,1303,331,1345,4091,4175,21127,
%T A379615 4301,21757,87973,88813,90073,90577,1192621,1201981,1211809,1221637,
%U A379615 1234741,1240201,626243,89909,45247,15169,30533,153601,2941819,2956639,20807623,20876783
%N A379615 Numerators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
%H A379615 Amiram Eldar, <a href="/A379615/b379615.txt">Table of n, a(n) for n = 1..1000</a>
%H A379615 V. Sitaramaiah and M. V. Subbarao, <a href="https://informaticsjournals.co.in/index.php/jims/article/view/21936">Asymptotic formulae for sums of reciprocals of some multiplicative functions</a>, J. Indian Math. Soc., Vol. 57 (1991), pp. 153-167.
%H A379615 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
%F A379615 a(n) = numerator(Sum_{k=1..n} 1/A188999(k)).
%F A379615 a(n)/A379616(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) / n), where A and B are constants.
%e A379615 Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 89/40, 93/40, 857/360, 887/360, 181/72, ...
%t A379615 f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
%o A379615 (PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
%o A379615 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(numerator(s), ", "))};
%Y A379615 Cf. A188999, A307159, A370904, A379616 (denominators), A379617.
%K A379615 nonn,easy,frac
%O A379615 1,2
%A A379615 _Amiram Eldar_, Dec 27 2024