cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379616 Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

This page as a plain text file.
%I A379616 #7 Dec 28 2024 09:11:30
%S A379616 1,3,12,60,20,30,120,40,40,360,360,72,504,126,504,1512,1512,7560,1512,
%T A379616 7560,30240,30240,30240,30240,393120,393120,393120,393120,393120,
%U A379616 393120,196560,28080,14040,4680,9360,46800,889200,889200,6224400,6224400,889200,1778400
%N A379616 Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
%H A379616 Amiram Eldar, <a href="/A379616/b379616.txt">Table of n, a(n) for n = 1..1000</a>
%H A379616 V. Sitaramaiah and M. V. Subbarao, <a href="https://informaticsjournals.co.in/index.php/jims/article/view/21936">Asymptotic formulae for sums of reciprocals of some multiplicative functions</a>, J. Indian Math. Soc., Vol. 57 (1991), pp. 153-167.
%H A379616 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
%F A379616 a(n) = denominator(Sum_{k=1..n} 1/A188999(k)).
%t A379616 f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
%o A379616 (PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
%o A379616 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(denominator(s), ", "))};
%Y A379616 Cf. A188999, A307159, A370904, A379615 (numerators), A379618.
%K A379616 nonn,easy,frac
%O A379616 1,2
%A A379616 _Amiram Eldar_, Dec 27 2024