cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379617 Numerators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

This page as a plain text file.
%I A379617 #7 Dec 28 2024 09:10:55
%S A379617 1,2,11,43,53,4,37,103,23,65,71,337,2539,1217,2539,7337,7757,1501,
%T A379617 7883,7631,31469,30629,31889,6277,84625,82753,423593,82753,426869,
%U A379617 421409,216847,213727,108911,11899,24253,119081,2317139,760853,773203,6889667,7037867,13946059
%N A379617 Numerators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
%H A379617 Amiram Eldar, <a href="/A379617/b379617.txt">Table of n, a(n) for n = 1..1000</a>
%H A379617 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
%F A379617 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).
%F A379617 a(n)/A379618(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) * n^c), where c = log(9/10)/log(2) = -0.152003..., and A and B are constants.
%e A379617 Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 103/120, 23/24, 65/72, 71/72, 337/360, ...
%t A379617 f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
%o A379617 (PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
%o A379617 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(numerator(s), ", "))};
%Y A379617 Cf. A188999, A307159, A370904, A379615, A379618 (denominators).
%K A379617 nonn,easy,frac
%O A379617 1,2
%A A379617 _Amiram Eldar_, Dec 27 2024