cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379618 Denominators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

This page as a plain text file.
%I A379618 #7 Dec 28 2024 09:10:39
%S A379618 1,3,12,60,60,5,40,120,24,72,72,360,2520,1260,2520,7560,7560,1512,
%T A379618 7560,7560,30240,30240,30240,6048,78624,78624,393120,78624,393120,
%U A379618 393120,196560,196560,98280,10920,21840,109200,2074800,691600,691600,6224400,6224400,12448800
%N A379618 Denominators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
%H A379618 Amiram Eldar, <a href="/A379618/b379618.txt">Table of n, a(n) for n = 1..1000</a>
%H A379618 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
%F A379618 a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).
%t A379618 f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
%o A379618 (PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
%o A379618 list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(denominator(s), ", "))};
%Y A379618 Cf. A188999, A307159, A370904, A379616, A379617 (numerators).
%K A379618 nonn,easy,frac
%O A379618 1,2
%A A379618 _Amiram Eldar_, Dec 27 2024