cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379619 Numerators of the partial sums of the reciprocals of the alternating sum of divisors function (A206369).

This page as a plain text file.
%I A379619 #11 Jan 08 2025 11:41:45
%S A379619 1,2,5,17,37,43,15,79,573,152,311,484,657,2041,4187,46897,94949,97589,
%T A379619 295847,300467,305087,310631,313151,63739,9181,9313,46961,47401,
%U A379619 333787,340717,68513,9863,49711,25103,6317,44549,89483,90253,181661,183047,9187,18605,18671
%N A379619 Numerators of the partial sums of the reciprocals of the alternating sum of divisors function (A206369).
%H A379619 Amiram Eldar, <a href="/A379619/b379619.txt">Table of n, a(n) for n = 1..1000</a>
%H A379619 László Tóth, <a href="https://doi.org/10.2478/ausm-2014-0007">A survey of the alternating sum-of-divisors function</a>, Acta Universitatis Sapientiae, Mathematica, Vol. 5, No. 1 (2013), pp. 93-107. See p. 101, eq. (17).
%H A379619 László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.14, p. 35.
%F A379619 a(n) = numerator(Sum_{k=1..n} 1/A206369(k)).
%F A379619 a(n)/A379620(n) = A * log(n) + B + O(n^(-1+eps)) for any eps > 0, where A and B are constants, A = Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/beta(p^k))) = 1.72360989673744398907... .
%e A379619 Fractions begin with 1, 2, 5/2, 17/6, 37/12, 43/12, 15/4, 79/20, 573/140, 152/35, 311/70, 484/105, ...
%t A379619 f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/beta[n], {n, 1, 50}]]]
%o A379619 (PARI) beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
%o A379619 list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / beta(k); print1(numerator(s), ", "))};
%Y A379619 Cf. A206369, A370905, A370906, A379620 (denominators), A379621.
%K A379619 nonn,easy,frac
%O A379619 1,2
%A A379619 _Amiram Eldar_, Dec 27 2024